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Abstract
The decoherence and fidelity of spin states in a localized single-electron
quantum dot in the presence of a dc magnetic field, arising either from the
nuclear hyperfine interaction within the dot or due to its coupling with another
localized quantum dot, are examined in detail. A general framework for
determining the time evolution of the reduced density matrix ρ for a single
dot is presented, which is exact up to the second order in interaction with
any reservoir. In particular, it is applied to the problem of nuclear hyperfine
coupling, and approximate estimates of coherence decay time are made when
the nuclear spins are either polarized or unpolarized and the internal dynamics
of nuclear spins is determined mainly by the nuclear magnetic dipole–dipole
interaction. The fidelity of a pure unperturbed electronic one-qubit spin state is
obtained as a function of time, which is exact even on a very short timescale
of logic gate operations. The time variation of the fidelity of the same one-
qubit state on the localized dot as a part of the direct product with another one-
qubit state on another localized dot arising because of coupling between these
quantum dots is also calculated in this paper. In this case, we include both the
single-particle tunnelling between the dots as well as the direct and exchange
Coulomb interactions, including on-site Coulomb repulsion. This allows for the
double occupation of a single dot. It is found that the loss of fidelity of such two-
qubit states due to double occupancy and additional phase errors in the presence
of appreciable dot–dot coupling can become a more severe limiting factor than
that due to the hyperfine interaction in individual dots.

1. Introduction

In recent years, there has been a great interest in understanding the nature of coherence
decay and relative phase errors of a general spin state in single-electron quantum dots in
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semiconductors [1, 2]. This is extremely important because of the possible use of such
spin states as a qubit in quantum information processing and computing [3]. For such
applications, one has to minimize the coherence decay rate, as far as possible, and find suitable
procedures to correct errors in processing due to decay and additional relative phase change
of coherently superposed quantum states. Various possible mechanisms for decoherence have
been considered in the literature, including spin–orbit coupling, nuclear hyperfine interaction,
and coupling to a nearby quantum dot [4–11]. Unless the material has large spin–orbit
interaction, at low enough temperatures the dominant mechanisms for decay and additional
phase error in spin states are expected to arise from the hyperfine coupling of the electron spin
with nuclear spins and from its coupling to a nearby quantum dot. In order to implement any
two-qubit or higher qubit logic operations, it is necessary to have a system of two coupled
localized single-spin quantum dots in most of the proposals involving the use of quantum dots
for quantum computing.

In this paper, we would like to explore the possible hurdles in implementing one-qubit
and two-qubit logic operations through single and coupled double localized quantum dots.
While processing any general one-qubit spin state |�(t = 0)〉 = α(0)|↑〉 + β(0)|↓〉, with
the energy difference h̄ωa between the two levels and |α|2 + |β|2 = 1, in the presence
of various interactions with the environment, both the change in the relative phase of the
coefficients as a function of time t , i.e., the phase of the off-diagonal element of the Hermitian
reduced spin-density matrix, and their actual decay, compared to the case of free precession, are
important parameters. The combined effect is best described by the fidelity F(t) in the quantum
computing language. As defined by Nielsen and Chuang [11], F(t) = [〈�(t)|ρ(t)|�(t)〉]1/2,
where ρ(t) is the reduced density matrix of the spin system in the presence of interactions
with the environment. In the absence of these interactions, the fidelity is 1 (the maximum
value possible). Any departure of fidelity F from 1, because of the interactions, determines
the performance and the number of logic operations possible. The nature of the departure of
fidelity from 1 determines whether it is feasible to find corresponding error correction codes,
including phase error corrections. The fidelity can depart very much from 1 even if there is no
actual decay or the decay is too slow. The decay timescale for the off-diagonal matrix elements
is characterized by the time in which their absolute value changes by a factor 1/e, whereas the
additional phase-error timescale can be characterized by the time in which phase errors change
by π . The same situation will occur in processing two-qubit states in a coupled double quantum
dot system, which will now have an additional loss of fidelity due to the possibility of double
occupancy (both the spins on the same site) and additional phase errors due to single-particle
tunnelling and other interactions between the dots.

In what follows, we first investigate the nature of decoherence and fidelity of single
quantum dot qubit states, arising from the time variation of the off-diagonal elements of the
reduced 2 × 2 density matrix of the electronic spin-1/2 system in a dc magnetic field, because
of the nuclear hyperfine interaction, with N effective nuclear spins within the envelope of
the one-electron wavefunction in the localized dot. This is presented in section 2. A typical
effective value of N is of the order of 105 in a localized dot of the size of 20 nm. To be
specific, in this paper we will use all parameters relevant to GaAs single-electronic quantum
dots of size 20 nm, with nuclear spin I = 3/2 [1]. To obtain the equation governing the
time-dependence of the reduced density matrix ρ of the system, we follow the second-order
perturbation approach of Bloch and Wangsness [12], but instead of making the Markovian
approximation used by them for correlation functions of the surroundings we first present a
theory of relaxation decay and time-dependent phase error without the very short correlation
time approximation. Estimates of the resulting decay time and relative phase error in the off-
diagonal elements of the reduced density matrix are obtained and discussed in the same section.
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It will be shown how the relative phase error due to spread in free precession frequency, which
gives rise to the well known inhomogeneous line width and decay on ensemble averaging over
all possible nuclear spin orientations [9] for unpolarized nuclei, with the timescale of 5 ns in the
GaAs dot, can be corrected after each logic operation being performed on the timescale of, say,
0.1 ns. In general, the homogeneous broadening decay time, which determines the number of
single logic operations possible, arising from the internal nuclear dynamics involving mainly
the nuclear magnetic dipole–dipole interaction with a timescale of 10−4 s, depends on the
initial spin polarization of the nuclear spins in the dot, and can be quite slow for appreciable
nuclear polarizations [11]. The same thing is true for the inhomogeneous phase error or the
corresponding decay. A very general spin bath model for environment interacting with a central
spin-half system has also been considered by Prokof’ev and Stamp [13]. We will discuss that
work in the context of our straightforward approach and final results.

In section 3, we take up the problem of fidelity and decoherence of spin states of a quantum
dot when it is coupled to another dot. We explicitly obtain the general solution of the time-
dependent Schrodinger equation for two electronic spins localized in quantum dots a and b,
respectively, in the presence of an external dc magnetic field, single-particle tunnelling between
the dots and effective Coulomb interaction between the electrons. The nature of decay and
relative phase errors due to nuclear hyperfine coupling will be same for each individual dot
states, as calculated in section 2. For an initial qubit state of the spin localized in dot a, as
considered in section 2, and the electronic spin state of dot b being either up or down, we find
it enough here to calculate the additional change in the fidelity of such a two-qubit spin state at
any time t because of the dot–dot coupling only. This includes the effect of double occupancy,
i.e., two spins at the same site [10]. We discuss how difficult it is to overcome the effect of
double occupancy and correct for the phase error in this case, to increase the fidelity. One can,
of course, increase the distance between the dots from its typical value of 40 nm to decrease
the dot–dot coupling parameters, but then the two-qubit logic gate operation times will become
too slow and the phase error has still to be corrected before each operation. We conclude our
discussion in section 4, which includes suggestions for future experiments on such isolated
systems.

2. Effect of hyperfine coupling in a single dot: general theory of relaxation and
decoherence

Let us first consider the case of a single quantum dot ‘a’ represented by one effective spin-1/2
electron localized in the quantum dot and interacting with N0 nuclear spins in the dot through
the familiar contact hyperfine interaction. In the presence of a dc magnetic field B in the z-
direction, the total Hamiltonian for the dot can be written as (in units with h̄ = 1)

H = Ha + HN + HaN (2.1)

Ha = ωa Saz, ωa ≡ ωB = gaμB B (2.2a)

HN = −ωN

N0∑

j=1

I (0)
j + H (0)

N (2.2b)

HaN =
N0∑

j=1

A j �I j · �Sa ≡
+1∑

q=−1

F (q)S(−q) =
+1∑

q=−1

F (−q)S(q) (2.2c)

F (0) =
N0∑

j=1

F (0)

j =
N0∑

j=1

A j I (0)

j ; F (±1) =
N0∑

j=1

F (±1)

j =
N0∑

j=1

A j

2
I (±1)

j (2.3)



10680 A K Rajagopal et al

I (0)
j = I j z, I (±1)

j = I j x ± iI j y; S(0) = Saz, S(±1) = Sax ± iSay . (2.4)

In the above expressions, �I j represents the j th nuclear spin with magnetic moment gNμN �I j ,
H (0)

N is the nuclear Hamiltonian describing the internal motion of the nuclei, all with the same
spin value I , �Sa represents the electronic spin with magnetic moment −gaμB �Sa , and HaN is the
contact hyperfine interaction of the spin −1/2 electron with N0 nuclear spins. The hyperfine
coupling strength A j = Av0|�( �Raj)|2, where v0 is the effective volume per nuclear spin in the
dot and |�( �Raj)| is the amplitude of the electronic wavefunction at the j th nuclear site. For
GaAs, A =∑ j A j ≡ N A1 ≈ 1011 s−1 [1], where A1 is the strength of the hyperfine coupling
with the nucleus at the centre of the envelope function. This relation between A and A1 defines
what we call the effective number of nuclei, N .

In the absence of hyperfine interaction, we have

ρ(0)
a (t) = A(t)ρ(0)

a A−1(t), ρ
(0)

N (t) = B(t)ρ(0)
N B−1(t), (2.5)

where the operators A(t) (not to be confused with the total hyperfine coupling A) and B(t) are
given by

A(t) = exp −(iHat), B(t) = exp −(iHN t) (2.6)

and where the commutator [B(t), A(t)] = 0. The density matrix of the total system ρaN

satisfies the equation

dρaN

dt
= −i [Ha + HN + HaN , ρaN ] . (2.7)

Let us assume that, at time t = 0, one has

ρaN (t = 0) = ρa(0)ρN (0) = ρ(0)
a ρ

(0)
N , (2.8)

where as usual we have the normalization condition

TrρaN (t) = Trρ(0)
a (0) = Trρ(0)

N (0) = 1. (2.9)

The reduced density matrix of the electronic system at any time t is defined by

ρ(t) = TrN ρaN (t) =
∑

f,u

〈 f u|ρaN (t) | f u〉, (2.10)

where {| f u〉} is the complete set of states of the nuclear reservoir in the absence of the
interaction HaN ,

HN | f u〉 = E f | f u〉 . (2.11)

Here, the symbol u labels possible orthogonal degenerate states for a given f with energy E f .
For example, the value of the total z-component of the nuclear spin M = ∑

j I j z = ∑
j m j z

will correspond to the label f here. But for a given M , there are many degenerate states
possible corresponding to different configurations of the individual values of the nuclear spin
states. Thus, in our case, the state | f u〉 will correspond to the nuclear spin state | f = M =∑

j m jz; u = {m jz}〉.
The equation for the 2 × 2 reduced density matrix ρ(t) for the electronic spin system can

now be obtained using the familiar interaction picture and the Dyson series expansion up to
the second order in the interaction HaN . However, to avoid the first-order terms in HaN in our
expansion, it is best to follow the Bloch–Wangsness procedure [12] in which a proper first-order
term is added to the system Hamiltonian Ha and subtracted from Ha N . This is accomplished
by rewriting the Hamiltonian (2.1) as
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H = H̃a + HN + H̃aN (2.12)

H̃a = Ha + δH, H̃aN = HaN − δH (2.13a)

δH = 〈HaN 〉 ≡ TrN HaNρ
(0)

N =
∑

f

∑

u

〈 f u| HaN | f u〉ρ(0)

N (E f ). (2.13b)

In the present case, the operator δH in the electronic spin space is

δH =
〈
∑

q

F (q)S(−q)

〉
= 〈F (0)S(0)〉 ∼=

∑

j

A j(〈M〉/N0)S(0) = pI N A1 S(0) (2.14)

H̃a = ω̃a S(0), ω̃a = ωa + δωa, δωa
∼= pI N A1, (2.15)

where N A1 = A is the total coupling constant of the nuclear spins and p is the degree of initial
polarization of the nuclear spins (−1 � p � 1). The value of p = 1 represents complete
polarization with each nuclear spin having m jz = I , whereas p = −1 corresponds to complete
polarization with each m jz = −I . The unpolarized state corresponds to the average M = 0,
with p = 0.

Using the interaction picture, but with free Hamiltonians H̃a (equation (2.13a)) HN and
interaction H̃aN , and the Dyson series expansion, a straightforward calculation leads to the
following general equation for the reduced density matrix to second order in H̃aN :

dρ

dt
+ i
[

H̃a, ρ
]

= −	(ρ) (2.16)

	(ρ) =
∫ t

0
dt ′ L(t, t ′, ρ(t)) =

∫ t

0
dτ L(−τ, ρ(t)); t − t ′ = τ (2.17a)

L(−τ, ρ(t)) =
∑

q

∑

q ′

⎧
⎪⎨

⎪⎩

	qq ′(−τ )S(−q)S(−q ′)(−τ )ρ(t)
− 	qq ′(−τ)S(−q ′)(−τ )ρ(t)S(−q)

+ 	q ′q(τ )ρ(t)S(−q ′)(−τ )S(−q)

− 	q ′q(τ )S(−q)ρ(t)S(−q ′)(−τ)

⎫
⎪⎬

⎪⎭
, (2.17b)

where

	qq ′(−τ ) = 〈F̃ (q)(t)F̃ (q ′)(t ′)〉 = δq ′,−q	q,−q (−τ ) (2.18a)

	q ′q(τ ) = 〈F̃ (q ′)(t ′)F̃ (q)(t)〉 = 	∗
q ′q(−τ ) (2.18b)

F̃ (q) = F (q) − 〈F (q)〉; F̃ (q)(t) = B−1(t)F̃ (q) B(t) (2.18c)

S(q)(−τ ) = Ã−1(−τ)S(q) Ã(−τ ) = exp(−iqω̃aτ )S(q). (2.18d)

Here, we have used the fact that the operators F̃ (q) transform as the components of a vector,
i.e. like the components I (q) of the total nuclear spin angular momentum; F̃ (−q) is the Hermitian
conjugate of F̃ (q).

In order to separate the expressions (2.17b) into a sum of two terms of the form g(−τ )

times a Hermitian operator plus ih(−τ ) times an antiHermitian operator, where g and h are
real functions of −τ , let us introduce the following two functions,

K (1)
qq ′(−τ ) = 1

2 (	qq ′(−τ ) + 	q ′q(τ )) = K (1)
q (−τ )δq ′,−q (2.19)

K (2)
qq ′(−τ ) = − 1

2 (	qq ′(−τ ) − 	q ′q(τ )) = K (2)
q (−τ )δq ′,−q (2.20)
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with the properties

K (1)
−q(−τ ) = K (1)∗

q (−τ ) = K (1)
q (τ ) (2.21a)

K (2)
−q(−τ ) = −K (2)∗

q (−τ ) = −K (2)
q (τ ). (2.21b)

After some algebra and using the above symmetries of the correlation functions, we obtain

L(−τ, ρ(t)) =
1∑

q=−1

(a(1)
q (−τ ) + a(2)

−q(−τ ))

× (S(−q)S(q)ρ(t) + ρ(t)S(−q)S(q) − 2S(q)ρ(t)S(−q))

+ i
1∑

q=−1

(c(1)
q (−τ ))(S(−q)S(q)ρ(t) + ρ(t)S(q)S(−q)), (2.22)

where

a(1)
−q(−τ ) = a(1)

q (−τ ); a(2)
−q(−τ ) = −a(2)

q (−τ); c(1)
−q(−τ ) = −c(1)

q (−τ ), (2.23a)

a(1)
0 (−τ ) = k0(−τ ); a(2)

0 (−τ ) = 0; c(1)
0 (−τ ) = 0, (2.23b)

a(1)
1 (−τ ) = k1(−τ ) cos ω̃aτ + p1(−τ ) sin ω̃aτ ; (2.23c)

a(2)

1 (−τ ) = k2(−τ ) cos ω̃aτ + p2(−τ ) sin ω̃aτ ; (2.23d)

c(1)

1 (−τ ) = k1(−τ) sin ω̃aτ − p1(−τ ) cos ω̃aτ, (2.23e)

and where the real functions ki (i = 0, 1, 2), p j ( j = 1, 2) are given by

k0(−τ ) = K (1)
0 (−τ ); k1(−τ ) + ip1(−τ ) = K (1)

1 (−τ )

k2(−τ ) + ip2(−τ ) = K (2)
1 (−τ ).

(2.24)

Note that ki are even functions and p j are odd functions of their argument.
It should be emphasized here that the above formulation gives the familiar Lindblad

form [14] as the first term in 	(ρ), and the second term corresponds to a second-order
contribution to the system Hamiltonian which has been already corrected to first order. Thus
one finds that the effect of the second-order term is to change the system Hamiltonian (2.15) to

H̃a = ω̃a S(0) → (ω̃a + c(t))S(0), (2.25)

where

c(t) = −2
∫ t

0
dτ c(1)

1 (−τ ). (2.26)

In our case we can show that the functions k1/2 and p2/2 are respectively the real and imaginary
parts of the correlation function 	xx = 	yy , whereas p1/2 and −k2/2 are respectively the
real and imaginary parts of 	yx = −	xy . In some situations the cross correlation functions
	yx = 	xy = 0, in which case p1 and −k2 will be zero. However, in general, this is not the
case. We now introduce three real relaxation functions defined by

	0(t) =
∫ t

0
dτ a(1)

0 (−τ ) (2.27)

	1(t) =
∫ t

0
dτ a(1)

1 (−τ ) (2.28)

	2(t) =
∫ t

0
dτ a(2)

1 (−τ ). (2.29)
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If the nuclear bath is in thermal equilibrium at temperature T then the structure of the
reservoir correlation functions are such that it can be shown that as time t approaches →
∞, (	2(∞)/	1(∞)) = [exp(h̄ω̃a/kBT ) − 1]/[exp(h̄ω̃a/kBT ) + 1]. This then leads to the
expected result that at large times the ratio of the diagonal elements of the density matrix of the
spin system approaches the Boltzmann factor.

Equations (2.16), (2.17), (2.22) and (2.26), with the above considerations, then lead to two
independent equations for determining the diagonal and the off-diagonal matrix elements of the
density matrix. In the representation in which the spin-up state is called 1 and the spin-down
state is called 2, the equations determining the diagonal and the off-diagonal matrix elements
are

dρ11/dt = −dρ22/dt = −4	1(t)ρ11 + 2((	1(t) − 	2(t)) (2.30a)

dρ12/dt = dρ∗
21/dt = − (	0(t) + 2	1(t)) ρ12 − i (ω̃a + c(t)) ρ12. (2.30b)

We thus obtain the complete temporal development of ρ12 as

ρ12(t) = ρ12(0) exp(−i (ωa + δωa) t) exp

(
−i
∫ t

0
dt ′c(t ′)

)

× exp

(
−
∫ t

0
dt ′ (	0(t

′) + 2	1(t
′)
))

.

(2.31)

Until now, our approach has been quite general, with a straightforward derivation of the
final result which is exact to the second order in the electron–nuclear coupling. Such a compact
form for the final equations determining the complete temporal behaviour of the reduced
density matrix is usually not found in the literature. In fact, this form is applicable to any
type of coupling between a reservoir and a two-level system with the obvious modification in
the form of the interaction and reservoir correlation functions. Further progress in our case
can, however, be made only if we know the nuclear correlation functions. Depending upon the
initial state of the nuclear spins, these correlation functions depend on the effective number N
of the nuclear spins, magnetic field B , the polarization factor p and some correlation timescale
τcμ arising from the internal nuclear spin dynamics. This actually requires detailed numerical
calculations [1, 15] for the correlation functions. However, one may be able to get a rough
estimate of the magnitude of the coherence time if we make certain simplifying assumptions.
When the average value of the z-component of spin per nucleus is described by pI which is
related to 〈M〉 = 〈∑ j m jz〉, and the total hyperfine coupling constant is replaced by A = N A1,
it can be shown that k0(−τ ) → 0. Similarly, it is possible to neglect p1(−τ ), at least for
vanishing Zeeman splitting of the nuclear spin states compared to electronic Zeeman splitting
and small polarization factor. Further, if we assume that, because of the internal dynamics of
the nuclear system,

k1(−τ ) ∼= 〈|F (+1)|2〉e−|τ |τc ; 〈|F (+1)|2〉 ≡ 〈F (+1) F (−1)〉, (2.32)

the temporal development of ρ12 is determined by the function

2	1(t) = 2〈〈|F (+1)|2〉〉
∫ t

0
dt ′e−t ′/τc cos ω̃at ′

= 1

ω̃a(1 + �2
c)

{
e−t ′/τc (�2

c sin ω̃at − �c cos ω̃at) + �c

}
, (2.33)

where �c = ω̃aτc.
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This function has both damped oscillatory terms and a term constant in time. Its precise
behaviour depends on �c and ω̃at . The short-time behaviour is complicated. However, only
the constant term determines its long-time behaviour

2	1(t) → 1

T2h
= 2〈|F (+1)|2〉 τc

1 + �2
c

. (2.34)

Similarly, the long-time behaviour of the second-order frequency shift is given by

c(t → ∞) = −2
∫ t→∞

0
〈|F (+1)|2〉e−t/τc sin ω̃at → −2[〈|F (+1)|2〉/ω̃a] �2

c

(1 + �2
c)

. (2.35)

For the two limiting cases, one can define a homogeneous broadening decay time T2h for the
decay of off-diagonal elements of the matrix element and the second-order frequency shift
c(∞), which are given by

T −1
2h = 2〈|F (+1)|2〉τc, c(∞) = −2〈|F (+1)|2〉ω̃aτ

2
c ; �c � 1, (2.36a)

and
1

T2h
= 2〈|F (+1)|2〉 1

ω̃2
aτc

, c(∞) = −2〈|F (+1)|2〉/ω̃a; �c � 1. (2.36b)

For GaAs, one can take 〈|F (+1)|2〉 ≈ 5 × 1020 s−2 and the correlation time for the internal
nuclear spin dynamics arising from magnetic dipole interaction to be of the order τc ≈ 10−4 s.
Here ω̃a = ωa + A1 N I p in which ωa = ωB

∼= 5 × 1010 s−1 for a typical 2 T magnetic field.
This implies that �c is always much greater than 1, and one has to use the estimate given by
equation (2.36b) for the homogeneous broadening decay time T2h . In the unpolarized state,
p = 0, we find T2h ≈ 2 × 10−4 s. However, when p �= 0, T2h is increased further. For
�ωa = A1 N I p � ωa, T2h ≈ (p2 Nτc)/2 since 〈|F (+1)|2〉 is proportional to N . In such a
case, even for p ∼= 10−1, N = 105, T2h becomes of the order 5 × 10−2 s. Of course, in that
case the spin–orbit interaction will become the dominant mechanism for coherence decay with
relaxation times in the range of 10−3 s.

We must emphasize here that the above estimates of decay of the off-diagonal element
only refer to the long-time behaviour of the integral of the function 	1(t). There is the
additional relative phase error arising from the change in the precision frequency due to the
presence δωa and c(t) in equation (2.31). Note that in the case of unpolarized nuclei, when
δωa = 0, c(∞) is still finite even if the internal nuclear dipolar correlation time τc → ∞, as
can be seen from equation (2.36b). The limiting expression is consistent with the usual time-
independent second-order energy shift calculation giving rise to an additional relative phase.
Normally, for p = 0, one averages this inhomogeneous spread in the precession frequency
of the electronic spin over an ensemble (thermal or otherwise) of dots with different nuclear
orientations with a phenomenological Gaussian distribution [9] of the precession frequencies
with a width [〈(�ω)2〉]1/2 = [(16/3)〈|F (+1)|2〉/N]1/2 ≈ 2 × 108 s−1, in our notation.
This phenomenological averaging leads to the familiar inhomogeneous line broadening and
a temporal decay of the off-diagonal elements of the form, 〈exp(iωt)〉 = 〈cos ωt〉 =
exp(−〈(�ω)2〉t2/2) [9]. In fact if one averages exp(iωt) over any symmetric distribution for
ω which satisfies the central limit relations between their even moments, which are the same as
in the case of the Gaussian distribution, we will always get such a decay and inhomogeneous
broadening. If we average the long-time form of the phase variation exp(−ic(∞)t) in our
exact solution (2.31), we will get the same type of additional decay due to inhomogeneous
broadening with the decay time of the order of 5 ns. This spreading of precession frequency
is, however, a reversible process, and can be corrected by using the well known method of
the pulsed spin-echo technique [1, 16]. In our case, each of the one-qubit logic operations
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is supposed to be done at a very fast rate on the timescale of �top ≈ 10−10 s per operation.
For such a situation, no averaging of the phase error factor is possible, but the net phase error
has still to be corrected before each logic operation using the spin-echo technique or other
techniques for correcting such phase errors. During the single logic operation in time �top

at time t , the off-diagonal matrix element will change by a phase c(t) �top, in addition to a
slower decay determined by the scale of T2h . Whereas the homogeneous decay is irreversible
and it ultimately determines how many single logic operations are possible during T2h , the
reversible phase error of the single qubit due to the inhomogeneous frequency spread can be
corrected before each logic operation. The time between two logic operations can be 0.5 ns.
The phase error timescale, the time for it to change by π , is still of the order of 5 ns. But
note also that the actual temporal variation of the phase error factor in equation (2.31) is quite
complicated compared to its usual long-time behaviour used in most such phenomenological
averaging [9, 13]. Prokof’ev and Stamp [13] have developed a very general model for the
dynamics of a central effective two-level system, equivalent to our spin-half system, in the
presence of its general coupling to a spin bath (reservoir). It is not restricted to the case of the
nuclear hyperfine coupling of a spin-half electron. Although they do mention this problem, the
actual physical applications discussed there in detail do not include this problem. They also
consider the effect of an external magnetic field, but that is not the main focus of the work.
The main focus there is to explain different types of phenomenological averaging and apply
these results to different physical problems in weak external magnetic fields. Our approach is
to treat the problem of the hyperfine coupling, in the presence of a dc magnetic field, using a
microscopic theoretical approach for obtaining the detailed temporal evolution of the reduced
density matrix of the central spin which is exact to the second order in coupling even for short
times.

Let us now calculate the fidelity F of a pure initial state |χ〉 of the system with respect to
the general reduced density matrix ρ(t) obtained in the presence of the hyperfine coupling. It
is defined by

F = [〈χ | ρ |χ〉]1/2 . (2.37)

In the absence of hyperfine coupling, a typical superposed qubit state 1√
2
(|↑a〉 + |↓a〉) develops

in time as

|χ(t)〉 = 1√
2

(∣∣↑a

〉
e−iωa t/2 + ∣∣↓a

〉
eiωa t/2

)
. (2.38)

The fidelity of this state with respect to the ρ considered here in the presence of hyperfine
coupling is

F(t) = 1√
2

[
1 + 2 Re

(
ρ12(t)e

iωa t
)]1/2

. (2.39)

If we use equation (2.31) for ρ12(t), with ρ12(0) = e−iωa t/2, ωB = ωa , corresponding to the
non-interacting state, we obtain

F(t) = 1√
2

[
1 + (cos (δωat + δ2(t)) e−γ (t)

)]1/2
, (2.40)

where the general non-exponential damping factor γ (t) is given by

γ (t) =
∫ t

0
dt ′ [	0

(
t ′)+ 2	1

(
t ′)] (2.41)

and δ2(t) is given by

δ2(t) =
∫ t

0
dt ′c(t ′). (2.42)
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In the absence of interactions F(t) goes to 1, as expected. The complicated oscillations in the
above expression come from the energy shifts δωa and δ2(t). For unpolarized nuclei δωa = 0,
and δ2(t) represents the second-order phase error which has to be corrected before each logic
gate operation (to be performed at the rate of, say, 0.1 ns, at intervals of, say, 0.5 ns) in quantum
processing.

3. Effect of coupling to another localized quantum dot

In this section, we will consider the possibility of coherence decay, phase error and the loss
of fidelity of spin states of the quantum dot ‘a’ due to its coupling with another spin localized
at a second quantum dot ‘b’. We now deal with two effective single-electron quantum dots
interacting via the Coulomb interaction between the electrons with the possibility of single-
particle tunnelling between them. The effect of the Coulomb interaction is here parameterized
in terms of the integrals involving the Coulomb interaction in first order. Since the coherence
decay and relative phase error due to nuclear hyperfine coupling in each individual dots can
be obtained from our treatment of the hyperfine coupling in the previous section, here it is
enough for us to calculate the additional effect which arises from the dot–dot coupling. For any
two-qubit logic operation one cannot avoid this coupling.

In the absence of Coulomb interaction and tunnelling, let us denote the single-particle
states localized at ‘a’ and ‘b’, respectively, by

|aσ 〉 ≡ |wa(�r)χaσ 〉, |bσ 〉 ≡ |wb(�r)χbσ 〉, σ = ↑,↓ (3.1)

where wa(�r) refers to the space part and χaσ the spin part of the electron wavefunction for
the quantum dot ‘a’, with similar meaning for wb(�r) and χbσ . One then has the following six
two-particle states for the combined system:

|u1〉 = |a↑, b↓〉 ≡ c+
a↑c+

b↓|0〉; |u2〉 = |a↓, b↑〉 ≡ c+
a↓c+

b↑|0〉 (3.2a)

|u3〉 = |a↑a↓, 0〉 ≡ c+
a↑c+

a↓|0〉; |u4〉 = |0, b↑b↓〉 ≡ c+
b↑c+

b↓|0〉 (3.2b)

|u5〉 = |a↑, b↑〉 ≡ c+
a↑c+

b↑|0〉; |u6〉 = |a↓, b↓〉 ≡ c+
a↓c+

b↓|0〉. (3.2c)

It is convenient to use the spin singlet and triplet combinations of |u1〉, |u2〉 along with
symmetric and antisymmetric combinations of double-occupancy states |u3〉, |u4〉:
Triplet: |v5〉 = |u5〉, |v6〉 = |u6〉, |v1〉 = 1√

2
(|u1〉 + |u2〉) (3.3a)

Singlet: |v1〉 = 1√
2
(|u1〉 − |u2〉) (3.3b)

Double occupancy : |v3〉 = 1√
2
(|u3〉 + |u4〉), |v4〉 = 1√

2
(|u3〉 − |u4〉). (3.3c)

The effective Hamiltonian for the coupled dots can be written in the form

H = Ha + Hb + Hab, (3.4)

where

Ha = ωa Saz +
∑

σ

εac+
aσ caσ (3.5a)

Hb = ωb Sbz +
∑

σ

εbc+
bσ cbσ (3.5b)

Hab = (K + J )|v2〉〈v2| + (K − J )(|v1〉〈v1| + |v5〉〈v5| + |v6〉〈v6|)
+ 1

2 (Ua + Ub)(|v3〉〈v3| + |v4〉〈v4|)
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+ 1
2 (Ua − Ub)(|v3〉〈v4| + |v4〉〈v3|)

+ tab

2
(c+

a↑cb↑ + c+
b↑ca↑ + c+

a↓cb↓ + c+
b↓ca↓). (3.5c)

In the above equations the parameters εa and εb refer to the energy of one electron in the dots
‘a’ and ‘b’ respectively, and the tunnelling energy tab refers to the case when only one electron
is present in the two dots. The effect of Coulomb interaction when two electrons are present
in the system is taken into account through the parameters K , J, Ua, Ub. Here K is the direct
Coulomb integral, 〈wa(1)wb(2)|Vc(1, 2)|wa(1)wb(2)〉, between two electrons, one in ‘a’ and
the other in ‘b’, J is the corresponding exchange integral 〈wa(1)wb(2)|Vc(1, 2)|wb(1)wa(2)〉,
and Ua,b are the on-site repulsion energies with Ua = 〈wa(1)wa(2)|Vc(1, 2)|wa(1)wa(2)〉 (and
a similar expression for Ub). Vc(1, 2) is the Coulomb interaction between two electrons.

We first note that |v5〉, |v6〉 are eigenstates of the total Hamiltonian:

H |v5〉 = {εa + εb + (ωa + ωb)/2 + (K − J )}|v5〉 (3.6)

H |v6〉 = {εa + εb − (ωa + ωb)/2 + (K − J )}|v6〉. (3.7)

The remaining four states are coupled and the corresponding Hamiltonian matrix in this 4 × 4
subspace is given by

H =
⎛

⎜⎝

E1 ωab 0 0
ωab E2 tab 0
0 tab E3 �ab

0 0 �ab E3

⎞

⎟⎠ (3.8a)

where we have introduced the following notations:

E1 = εa + εb + K − J ; E2 = εa + εb + K + J ;
E3 = εa + εb + Ua + Ub

2
; ωab = ωa − ωb

2
;

�ab = εa − εb + Ua − Ub

2
.

(3.8b)

For identical dots, εa = εb = ε, ωa = ωb = ω, Ua = Ub = U , and by choosing the origin of
the energy scale to be 2ε = 0, this matrix reduces to

H =
⎛
⎜⎝

K − J 0 0 0
0 K + J tab 0
0 tab U 0
0 0 0 U

⎞
⎟⎠ . (3.9)

From this we see that |v1〉, |v4〉 are eigenstates with eigenvalues (K − J ), U respectively and
the states |v2〉, |v3〉 are coupled. We may then write the complete set of eigenvectors and their
corresponding eigenvalues in the form

H |�i〉 = ωi |�i〉, i = 1, . . . , 6 (3.10)

|�1〉 = |v1〉; ω1 = K − J (3.11)

|�4〉 = |v4〉; ω4 = U (3.12)

|�5〉 = |v5〉; ω5 = ωB + K − J (3.13)

|�6〉 = |v6〉; ω6 = −ωB + K − J (3.14)

|�3〉 = |v2〉 + C3|v3〉√
1 + C2

3

; ω3 = U + K + J

2
+ �

2
(3.15)

|�2〉 = |v3〉 − C3|v2〉√
1 + C2

3

; ω2 = U + K + J

2
− �

2
(3.16)
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where

� = [(U − K − J )2 + 4t2
ab

]1/2
, C3 = U − K − J + �

2tab
. (3.17)

In a practical situation, it is possible to change the barrier properties through external
means, by applying a gate voltage between the dots. It is equivalent to changing the distance
d = 2a between the dots. This will change tab, K and J which decrease exponentially with the
distance. For arbitrary variations of these quantities with time, it is not possible to find analytic
solution of the Schrodinger equation to determine the state of the system |�(t)〉. However,
if these quantities are kept constant during a given time interval, it is straightforward to find
|�(t)〉 at any time during this interval. Assuming this is indeed the case, during this period the
state of the system is given by

|�(t)〉 =
6∑

i=1

di e
−iωi t |�i〉 (3.18)

in which the coefficients di have to be determined from the given initial state at t = 0.
Let us assume that the initial state at t = 0 is given by the non-interacting state

|χ(0)〉ab = 1√
2

[|a↑〉 + |a↓〉] |b↓〉

= 1

2
(|v1〉 + |v2〉) + 1√

2
|v6〉 ≡ |�(t = 0)〉 . (3.19)

Although our complete solution allows us to compute the fidelity F(t) of any general two-qubit
state, which may or may not be entangled, the illustrative specific form chosen above is to see
how the dot–dot coupling affects the qubit state of the dot a, considered in section 2 while
calculating its fidelity in the presence of hyperfine interaction. We find that the state at time t
in the presence of coupling is then given by

|�(t)〉 =
{

1

2
e−iω1 t |v1〉 + 1

2
(
1 + C2

3

)
(
(e−iω2t C2

3 + e−iω3t )
) |v2〉

+ C3

2
(
1 + C2

3

)
(
e−iω3t − e−iω2 t

) |v3〉 + 1√
2

e−iω6t |v6〉
}

=
∑

i

gi(t) |vi 〉 . (3.20)

On the other hand, in the absence of coupling between dots, the coherent spin state |�〉 would
have evolved as

|χ(t)〉ab =
[

1

2
(|v1〉 + |v2〉) + 1√

2
eiωBt |v6〉

]
. (3.21)

The probability Pd(t) for double occupancy at time t is given by the square of the magnitude
of the amplitude of the |v3〉, i.e., by |g3(t)|2 in equation (3.20). This term is absent in
equation (3.21) and arises only due to the coupling between the dots [10, 17]. Explicitly, one
finds

Pd(t) = C2
3(

1 + C2
3

)2 sin2 ((ω3 − ω2) t/2)

= t2
ab

�2
sin2 (�t/2) . (3.22)
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Although there is no explicit exponential decay of the matrix elements of the density matrix
in this problem, one can get an idea about the degree of phase error and the loss of fidelity by
calculating F(t) of the non-interacting state |χ(t)〉ab. One finds

F(t) = [〈χ(t)|ρ(t)|χ(t)〉]1/2 = |〈χ(t)|�(t)〉|
= 1

2

[
5

2
− Pd(t) + 3

2
(
1 + C2

3

)

× {
C2

3 cos t (K − J − ω2) + cos t (K − J − ω3)
}]1/2

, (3.23)

in which the relations K − J = ω1 = ω6 + ωB have been used. Note that in the absence of
coupling or at t = 0, the fidelity is 1, as expected. Apart from the two oscillatory terms in
equation (3.23) which take both positive and negative values, the fidelity is always reduced if
there is double occupancy. The double occupancy probability goes to zero at times t = Tn,
where

|ω3 − ω2| Tn = �Tn = 2nπ, n = 1, 2, . . . . (3.24)

For such times, the fidelity is

F(Tn) = 1
2

[
5
2 + 3

2 cos Tn |K − J − ω2|
]1/2

. (3.25)

In addition, if it is possible to choose the coupling parameters by adjusting the distance between
the dots such that one can have

|K − J − ω2| Tn = 2mπ, m = 1, 2, . . . (3.26)

or

|K − J − ω2| Tn = (2m + 1) π, m = 0, 1, 2, . . . (3.27)

we can get a perfect fidelity of 1 or a perfect swap of states at a and b, respectively. When the
conditions (3.24) and (3.26) are simultaneously satisfied, we get a fidelity of 1, with the final
state the same as the state (3.21), apart from an overall phase factor exp it (K − J ). On the
other hand, if the conditions (3.24) and (3.27) are satisfied at the same time, one has a perfect
swap, with the final state.

∣∣χ ′(t)
〉 = 1√

2

[
1√
2

(|v1〉 − |v2〉) + eiωBt |v6〉
]

e−it (K−J )

= 1√
2

[|a↑, b↑〉 + eiωBt |a↓, b↓〉] e−it(K−J ). (3.28)

Note that the minimum time to complete one such two-qubit operation is given by (K − J −
ω2)

−1 ≈ −2J + t2
ab/U . The above conditions can be satisfied only if one can adjust the

coupling parameters very precisely. This is a very difficult task in practice. In general one has
to live with fidelity less than 1 and an imperfect swap operation.

Before we proceed further, we must give an estimate of the coupling parameters for typical
GaAs quantum dots with individual size of 20 nm and distance d = 2a between the two dots
of the order of 40 nm. In the absence of an external magnetic field, each effective one-electron
GaAs quantum dot, with an effective electron mass of 0.67 m, behaves like a large atom with the
new dot Bohr radius aBd = 10 nm in our case. All parameters are scaled in terms of the value of
the ratio aBd/aB ≈ 200, compared to a usual atom, with an additional reduction of the Coulomb
interaction by the dielectric constant of GaAs. The energy scale is scaled down from 1 eV to
about 5 meV. A typical value of the onsite Coulomb repulsion energy U is about 0.5 meV, in
energy units, in a dot confined in a harmonic potential well of size 20 nm and oscillator energy
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h̄ω0 = 3 meV. The tunnelling parameter t2
ab/U and Coulomb integrals K and J between

electrons fall off approximately as exp(−d2/4a2
Bd), and for chosen parameters, one finds [11],

tab/U = 0.5, tab ≈ 0.25 meV, K , J ≈ 0.05 meV ∼= 5 × 1010 s−1, t2
ab/U ≈ 1011 s−1. This

implies that t2
ab/�

2 ≈ 0.25. Equations (3.22) and (3.23) then show that the maximum loss of
fidelity due to double occupancy and the phase error can be as high as 57%. The loss due to the
double occupancy can of course be reduced considerably by increasing the distance between the
dots [11, 18], but that will reduce other coupling parameters to make the two-qubit operation
slower than 10−10 s per operation. Even then one will require correcting this phase error to
avoid the loss of fidelity. The phase error timescale is determined by (K − J − ω2)

−1 which
will then increase to say 10−9 s. But, unless this phase error is corrected before each operation,
this will be a more severe limiting factor than the decay of coherence of individual dot states
due to nuclear hyperfine coupling. Note that all these estimates are for fixed dot–dot coupling
parameters with no fluctuations. Any fluctuation even at the level of 1% due to inhomogeneity
in sample preparation can lead to an additional inhomogeneous decay time of 10−7–10−8 s,
on averaging, which is not so easy to correct as in the case of a single qubit, discussed in the
previous section.

4. Conclusions

In the preceding two sections, we have tried to estimate the coherence decay time, the relative
phase error time and the loss of fidelity of a pure superposed one-qubit spin state in a
single quantum dot and of a two-qubit state in two coupled single-electron quantum dots. In
quantum logic gate operations, both these times are important. When the phase errors or the
corresponding inhomogeneous broadening decay can be corrected in certain situations before
each logic operation, the irreversible homogeneous decay time of the coherence then really
determines the number of logic operations possible within this decay time. For this, in section 2
we presented a general theory of decoherence and relaxation in a spin-1/2 system interacting
with a reservoir, making only the second-order perturbation approximation for the coupling to
the reservoir. This was applied to the case of decoherence of electronic spin states in a single
quantum dot in the presence of a dc magnetic field, due to its interaction with nuclear spins
in the dot via the hyperfine contact interaction, which is exact even for short timescales of
single logic operation. Using simplifying assumptions regarding the nuclear spin correlation
functions, it was estimated that long-time transverse relaxation time T2h due to homogeneous
broadening arising from nuclear dipole interaction will be of order 2×10−4 s if the nuclear spins
are unpolarized. This can be increased considerably if the nuclear spins are polarized. But then
the dominant decoherence mechanism may be the spin–orbit interaction in the materials. There
is an additional relative phase error due to a second-order inhomogeneous spread of precession
frequency of the electronic spin, even for unpolarized nuclei, at a much faster timescale of 5 ns.
But this can be corrected before any one-qubit operation which is expected to be performed at
the timescale of 0.1 ns at intervals of, say, 0.5 ns. In general, the fidelity is less than 1 and is
minimum when the off-diagonal element of the system reduced density matrix finally goes to
zero for t � T2h . It was noted that more realistic estimate of decoherence in this case requires
numerical calculation of nuclear spin correlation functions. We propose to take this up in a later
work.

We have shown in section 3 that the coupling of two quantum dots because of the electron–
electron interaction and single-particle tunnelling leads to double occupancy of sites a and b of
the dots and additional phase errors in two-qubit states. This is in addition to the homogeneous
decay and phase error of respective states due to hyperfine coupling in each individual dot.
Although it is possible in principle to choose times such that double occupancy probability
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goes to zero [10] and adjust the dot–dot distance in such a way that fidelity of the two-qubit
state can be made 1, this is not an easy task. In general, for nearby dots this becomes a major
source for the loss of fidelity.

For the use of quantum dots for efficient quantum processing and computing, one requires
to implement both one-qubit as well as two-qubit logic operations at a fast timescale. For
this to happen, precise experiments on a single-dot system as well as on a coupled-dot system
have to be performed on timescales of 0.1 ns. One has to try to implement and measure the
fastest timescale possible for a single-qubit operation (rotation on the Bloch sphere) and the
additional phase error during the operation time. One has to see how this phase error acquired
between two logic operations can be corrected before each new operation and determine how
many such logic operations are possible in time T2h . For the case of two-qubit logic operations
using a coupled dot, one has to determine whether the interaction parameters can be precisely
controlled to minimize the additional loss of fidelity.
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